博客
关于我
HDU 1241 Oil Deposits
阅读量:787 次
发布时间:2019-03-23

本文共 5108 字,大约阅读时间需要 17 分钟。

    

Oil Deposits

The GeoSurvComp geologic survey company is responsible for detecting underground oil deposits. GeoSurvComp works with one large rectangular region of land at a time, and creates a grid that divides the land into numerous square plots. It then analyzes each plot separately, using sensing equipment to determine whether or not the plot contains oil. A plot containing oil is called a pocket. If two pockets are adjacent, then they are part of the same oil deposit. Oil deposits can be quite large and may contain numerous pockets. Your job is to determine how many different oil deposits are contained in a grid.

Input

The input file contains one or more grids. Each grid begins with a line containing m and n, the number of rows and columns in the grid, separated by a single space. If m = 0 it signals the end of the input; otherwise 1 ≤ m ≤ 100 and 1 ≤ n ≤ 100. Following this are m lines of n characters each (not counting the end-of-line characters). Each character corresponds to one plot, and is either '*' representing the absence of oil, or '@' representing an oil pocket.

Output

For each grid, output the number of distinct oil deposits. Two different pockets are part of the same oil deposit if they are adjacent horizontally, vertically, or diagonally. An oil deposit will not contain more than 100 pockets.

Sample Input

        1 1*3 5*@*@***@***@*@*1 8@@****@*5 5 ****@*@@*@*@**@@@@*@@@**@0 0    

Sample Output

        0        1        2        2    

C++ Implementation

        #include 
#include
#include
#include
using namespace std; const int MAXN = 105; char maze[MAXN][MAXN]; bool vis[MAXN][MAXN]; int n, m; bool judge(int x, int y) { return x >= 0 && x < n && y >= 0 && y < m; } void dfs(int x, int y) { vis[x][y] = true; for (int i = -1; i <= 1; ++i) { for (int j = -1; j <= 1; ++j) { int tx = x + i; int ty = y + j; if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') { dfs(tx, ty); } } } } int main() { while (scanf("%d%d", &n, &m) != EOF) { if (n == 0 && m == 0) break; for (int i = 0; i < n; ++i) { scanf("%s", maze[i]); } memset(vis, false, sizeof(vis)); int ans = 0; for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (maze[i][j] == '@' && !vis[i][j]) { ans++; dfs(i, j); } } } cout << ans << endl; } return 0; }

Java Implementation

        import java.util.Scanner;        public class Main {            static int MAXN = 105;            static boolean vis[][] = new boolean[MAXN][MAXN];            static char maze[][] = new char[MAXN][MAXN];            static int n, m;            static boolean judge(int x, int y) {                if (x < 0 || x >= n || y < 0 || y >= m) return false;                return true;            }            public static void main(String args[]) {                Scanner cin = new Scanner(System.in);                while (cin.hasNext()) {                    n = cin.nextInt();                    m = cin.nextInt();                    cin.nextLine();                    if (n == 0 && m == 0) break;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            vis[i][j] = false;                        }                    }                    for (int i = 0; i < n; ++i) {                        String s = cin.nextLine();                        maze[i] = s.toCharArray();                    }                    int ans = 0;                    for (int i = 0; i < n; ++i) {                        for (int j = 0; j < m; ++j) {                            if (maze[i][j] == '@' && !vis[i][j]) {                                ans++;                                dfs(i, j);                            }                        }                    }                    System.out.println(ans);                }                cin.close();            }            static void dfs(int x, int y) {                vis[x][y] = true;                for (int i = -1; i <= 1; ++i) {                    for (int j = -1; j <= 1; ++j) {                        int tx = x + i;                        int ty = y + j;                        if (judge(tx, ty) && !vis[tx][ty] && maze[tx][ty] == '@') {                            dfs(tx, ty);                        }                    }                }            }        }    

转载地址:http://olhzk.baihongyu.com/

你可能感兴趣的文章
Nginx反向代理和负载均衡部署指南
查看>>
Nginx反向代理是什么意思?如何配置Nginx反向代理?
查看>>
nginx反向代理解决跨域问题
查看>>
nginx反向代理解决跨域问题,使本地调试更方便
查看>>
nginx反向代理转发、正则、重写、负摘均衡配置案例
查看>>
Nginx反向代理配置
查看>>
Nginx启动SSL功能,并进行功能优化,你看这个就足够了
查看>>
nginx启动脚本
查看>>
Nginx和Tomcat的区别
查看>>
Nginx在Windows上和Linux上(Docker启动)分别配置基本身份认证示例
查看>>
Nginx在Windows下载安装启动与配置前后端请求代理
查看>>
Nginx在开发中常用的基础命令
查看>>
Nginx基础知识点与使用场景梳理
查看>>
Nginx多域名,多证书,多服务配置,实用版
查看>>
nginx如何实现图片防盗链
查看>>
Nginx学习总结(10)——Nginx前后端分离将多个请求转发到多个Tomcat,负载均衡反向代理
查看>>
Nginx学习总结(11)——提高Nginx服务器的安全性,稳定性和性能的12种技巧
查看>>
Nginx学习总结(12)——Nginx各项配置总结
查看>>
Nginx学习总结(13)——Nginx 重要知识点回顾
查看>>
Nginx学习总结(14)——Nginx配置参数详细说明与整理
查看>>